Research from the human side…relevant regardless 🙂 Rehabdeb, 3/2017
Low Back Pain—Is Motor Control Exercise Superior to General Exercise? A Review of the Research
by NSCA Personal Training Quarterly (PTQ)
and Nick Tumminello
This article provides an overview of the scientific evidence comparing specific motor control exercise intervention to using a more general exercise approach, and concludes by discussing the practical implications for strength and conditioning professionals from an exercise programming perspective.
Low back pain (LBP) is one of the major concerns of current healthcare. Motor control exercises, which are often referred to as “spinal stabilization” or “core stability” exercises, are often used by healthcare professionals worldwide as a common treatment for LBP.
Motor control exercises are designed for the individual to learn how to preferentially contract the local stabilizing muscles of the spine (e.g., multifidus, transversus abdominis, internal oblique) independently from the superficial trunk muscles (e.g., erector spinae rectus abdominis). Motor control exercises involve low-load activation of the local stabilizing muscles of the spine isometrically and in minimally loaded positions (e.g., four-point kneeling, supine lying, sitting, standing, etc.). A common example of a motor control exercise is the transversus abdominis draw-in. This exercise is often performed either lying supine or in four-point kneeling position and requires the individual to perform a slight drawing-in maneuver of the lower part of the anterior abdominal wall below the umbilical level (18).
Since research has shown altered recruitment patterns of deep trunk muscles, such as the transverse abdominis and lumbar multifidus in patients with LBP, these motor control exercises are often used in attempt to reestablish coordination of the deep trunk muscles in order to improve control of the spine (1,2,8,16,17).
Consequently, motor control exercises have also drawn tremendous attention from strength and conditioning professionals. Many strength and conditioning professionals often prescribe motor control exercises to their clients with current or previous LBP issues. The motor control exercises prescribed usually focus on activating the deep trunk muscles to restore control and coordination of these muscles. Many strength and conditioning professionals will often dedicate a great deal of their programming time, especially in the early stages of training, to using motor control exercises in order to first address what they believe to be the individual’s “underlying dysfunctions.” This is because a key feature of the motor control exercise approach is the training of the deep trunk muscles in isolation before progressing to demanding tasks that train coordination of the deep and the superficial trunk muscles (18). Then they will often focus the training program on the use of more general trunk training exercises, such as plank and side plank variations, which are often selected on the basis of maximizing the contraction benefit/spinal loading ratio, according to recommendations provided from recent experimental studies (15). These general trunk muscle specific-exercises will often be included into a comprehensive total-body strength and conditioning program, which often involves a variety of conventional resistance exercises such as loaded squat and deadlift variations that integrate the activation of deep and global trunk muscles along with other muscle groups (14).
Contrary to common belief, the current body of scientific evidence demonstrates that there is nothing special about using motor control exercises as a means to prevent or reduce back pain. This article provides an overview of the scientific evidence comparing specific motor control exercise intervention to using a more general exercise approach, and concludes by discussing the practical implications for strength and conditioning professionals from an exercise programming perspective.
Overview of the Evidence
An early study randomized LBP patients into two groups: a conventional physiotherapy group consisting of only general activity exercises (aimed at improving the muscular strength of the lumbar and pelvic region and legs, such as the abdominals, erector spinae, gluteals, quadriceps, and hamstrings) and manual therapy, and a conventional physiotherapy plus specific spinal stabilization exercises group (3). This study found that patients with LBP showed improvements with both treatment packages to a similar degree. Therefore, the researchers concluded that “there was no additional benefit of adding specific spinal stabilization exercises to a conventional physiotherapy package for patients with recurrent LBP,” (3).
A randomized, controlled trial of patients with recurrent, nonspecific back pain (NSLBP), compared two groups: a general exercise treatment group and a combination of general exercise and spinal stabilization exercise group. This study reported that a general exercise program reduced disability immediately after treatment to a greater extent than a stabilization-enhanced exercise approach in patients with recurrent NSLBP. However, there were no between-group differences on self-reported disability at the three-month follow-up (9). Therefore, stabilization exercises do not appear to provide additional benefit to patients with subacute or chronic LBP who have no clinical signs suggesting the presence of spinal instability (9).
Another randomized, controlled trial compared the effects of general exercise, motor control exercise, and manipulative therapy on function and perceived effect of intervention in patients with chronic back pain (6). The researchers found that “motor control exercise and spinal manipulative therapy produce slightly better short-term function and perceptions of effect than general exercise, but not better medium or long-term effects, in patients with chronic non-specific back pain,” (6).
A recent systematic review found that “evidence of very low to moderate quality indicates that motor control exercise showed no benefit over spinal manipulative therapy, other forms of exercise, or medical treatment in decreasing pain and disability among patients with acute and subacute low back pain. Whether motor control exercise can prevent recurrences of low back pain remains uncertain,” (11).
Additionally, another systematic review, this one about chronic NSLBP, concluded that “there is very low to moderate quality evidence that motor control exercise has a clinically important effect compared with a minimal intervention for chronic low back pain. There is moderate to high quality evidence that motor control exercise provides similar outcomes to manual therapies and low to moderate quality evidence that it provides similar outcomes to other forms of exercises,” (21). The authors went on to say that motor control exercises are not necessarily superior to other forms of exercise, and that the choice of exercises for chronic LBP should depend on individual preferences, therapist training, costs, and/or safety concerns (21).
Evidence Using Subgroups
Many healthcare providers state that low back pain is a multidimensional, socioeconomic public health problem with almost 85% of patients being diagnosed with NSLBP (4,7,10,12,13,22,23). They will also likely readily admit that treating chronic LBP is complicated because neither specific diagnostic nor treatment-based approaches have been shown to be absolutely effective. Many practitioners often prescribe motor control exercises almost universally to people with LBP issues. One of the common concerns many health rehabilitation specialists and strength and conditioning professionals who promote the use of specific motor control exercise interventions have with the research discussed above is that those studies did not involve patient subgroups. These professionals believe that patients with a motor control impairment can be diagnosed as a LBP subgroup who would benefit from specific motor control exercises. Therefore, they encourage studies in such patient subgroups with a common diagnosis or prognosis to examine outcomes from specific motor control exercise interventions.
To meet this concern, a recent study used a tailored exercise program versus general exercise for a subgroup of patients with LBP and movement control impairment. This study assessed the short-term effect of a specific exercise program targeting movement control impairment versus general exercise treatment on disability in patients with LBP and motor control impairment.
At the conclusion of this study, “no significant difference was found following the treatment period. Disability in LBP patients was reduced considerably by both interventions,” (20).
Another randomized controlled trial study that also involved subacute or chronic low-back pain patient subgroups found that motor control exercise and general exercise appear equally effective at reducing LBP in the patient subgroup included in this study (19). The researchers concluded that “the contrast between both types of intervention did not bring additional value to the shared effects,” (19). Additionally, strength and conditioning professionals should pay special attention to the following statements from the researchers of this study: “it is possible that the type of exercise treatment is less important than previously presumed; that the patient is guided to a consistent long-term exercise lifestyle is of most importance. The results of our study support previous findings that exercise in general, regardless of the type, is beneficial for patients with NSLBP,” (19).
Conclusion and Practical Takeaway
The overall takeaway of these studies is that exercise is a moderately effective treatment for chronic LBP. Although moderate evidence suggests that special motor control exercise interventions may prevent recurrences of LBP, no good evidence has been found for a difference in effect between types of exercise. In other words, although special motor control exercise interventions have been shown to improve low back outcomes, these exercises do not appear to be any more beneficial than general exercises, which also offer a wide range of well-established health, fitness, and physique benefits. Therefore, when it comes to clients with LBP, the strength and conditioning professional should not be hesitant to focus their programming on the use of general exercises that fit with the individual’s ability, medical profile, and personal goals.
This article originally appeared in Personal Training Quarterly (PTQ)—a quarterly publication for NSCA Members designed specifically for the personal trainer. Discover easy-to-read, research-based articles that take your training knowledge further with Nutrition, Programming, and Personal Business Development columns in each quarterly, electronic issue. Read more articles from PTQ »
Related Reading
Systematic Review of Core Muscle Activity During Physical Fitness Exercises
References
1. Al-Eisa, E, Egan, D, Deluzio, K, and Wassersug, R. Effects of pelvic skeletal asymmetry on trunk movement three-dimensional analysis in healthy individuals versus patients with mechanical low back pain. Spine 31(3): E71-79, 2006.
2. Bogduk, N. Management of chronic low back pain. The Medical Journal of Australia. 180)(2): 79-83, 2004.
3. Cairns, MC, Foster, NE, and Wright, C. Randomized controlled trial of specific spinal stabilization exercises and conventional physiotherapy for recurrent low back pain. Spine 31(19): E670-681, 2006.
4. Champagne, A, Descarreaux, M, and Lafon, D. Comparison between elderly and young males’ lumbopelvic extensor muscle endurance assessed during a clinical isometric back extension test. Journal of Manipulative and Physiological Therapeutics 32(7): 521526, 2009.
5. Choi, B, Verbeek, JH, Tam, WW, and Jiang, JY. Exercises for prevention of recurrences of low-back pain. Cochrane Database of Systematic Reviews 20(1): 2010.
6. Ferreira, ML, Ferreira, PH, Latimer, J, Herbert, RD, Hodges, PW, Jennings, MD, et al. Comparison of general exercise, motor control exercise and spinal manipulative therapy for chronic low back pain: A randomized trial. Pain 131(1-2): 31-37, 2007.
7. Gondhalekar, GA, Kumar, SP, Eapen, C, Mahale, A. Reliability and validity of standing back extension test for detecting motor control impairment in subjects with low back pain. Journal of Clinical and Diagnostic Research. 10(1): KC7-11, 2016.
8. Harris-Hayes, M, Van Dillen, LR, and Sahrmann, SA. Classification, treatment and outcomes of a patient with lumbar extension syndrome. Physiotherapy Theory and Practice 21(3): 181-96, 2005.
9. Koumantakis, GA, Watson, PJ, and Oldham, JA. Trunk muscle stabilization training plus general exercise versus general exercise only: Randomized controlled trial of patients with recurrent low back pain. Physical Therapy 85(3): 209-225, 2005.
10. Luomajoki, H, Kool, J, de Bruin, ED, and Airaksinen, O. Reliability of movement control tests in the lumbar spine. BioMed Central Musculoskeletal Disorders 8: 90, 2007.
11. Macedo, LG, Saragiotto, BT, Yamato, TP, Costa, LOP, Costa, LCM, Ostelo, RWJG, and Maher, CG. Motor control exercise for acute non-specific low back pain. Cochrane Database of Systematic Reviews CD012085, 2016.
12. Maher, CG, Latimer, J, Hodges, PJ, Refshauge, KM, Moseley, GL, Herbert, RD, et al. The effect of motor control exercise versus placebo in patients with chronic low back pain. BioMed Central Musculoskeletal Disorders 6: 54, 2005.
13. Manchikanti, L. Epidemiology of low back pain. Pain Physician. 3(2): 167-192, 2000.
14. Martuscello, JM, et al. Systematic review of core muscle activity during physical fitness exercises. The Journal of Strength and Conditioning Research 27(6): 1684-1698, 2013.
15. McGill, SM. Low back exercises: evidence for improving exercise regimens. Physical Therapy 78(7): 754-765, 1998.
16. O’Sullivan, PB. Diagnosis and classification of chronic low back pain disorders: Maladaptive movement and motor control impairments as underlying mechanism. Manual Therapy 10(4): 242255, 2005.
17. O’Sullivan, PB. Lumbar segmental “instability:” Clinical presentation and specific stabilizing exercise management. Manual Therapy 5(1): 2-12, 2000.
18. Richardson, CA, Jull, GA, and Hodges, PW, et al. Therapeutic Exercise for Spinal Segmental Stabilization in Low Back Pain. Edinburgh: Churchill Livingstone, 1999.
19. Saner, J, Kool, J, Sieben, JM, Luomajoki, H, Bastiaenen, CHG, and de Bie, RA. A tailored exercise program versus general exercise for a subgroup of patients with low back pain and movement control impairment: A randomised controlled trial with one-year follow-up. Manual Therapy 20(5): 672-279, 2015.
20. Saner, J, Sieben, JM, Kool, J, Luomajoki, H, Bastiaenen, CHG, and de Bie, RA. A tailored exercise program versus general exercise for a subgroup of patients with low back pain and movement control impairment: Short-term results of a randomised controlled trial. Journal of Bodywork Movement Therapies 20(1): 189-202, 2015.
21. Saragiotto, BT, Maher, CG, Yamato, TP, Costa, LOP, Costs, LCM, Ostelo, RWJG, and Macedo, LG. Motor control exercise for chronic non-specific low-back pain. Cochrane Database of Systematic Reviews CD012004, 2016.
22. Tétreau, C, Dubois, JD, Piché, M, and Descarreaux, M. Modulation of pain-induced neuromuscular trunk responses by pain expectations: A single group study. Journal of Manipulative and Physiological Therapeutics 35(8): 636-644, 2012.
23. Tidstrand, J, and Horneji, E. Inter-rater reliability of three standardized functional tests in patients with low back pain. BioMed Central Musculoskeletal Disorders 10: 58, 2009.
Nick Tumminello
About the Author:
Nick Tumminello, NSCA-CPT
Nick Tumminello has become known as “the trainer of trainers.” He is the owner of Performance University, which provides fitness and personal trainer continuing education. Tumminello is a fitness expert for Reebok and the author of the book “Strength Training for Fat Loss.” He lives in Fort Lauderdale, FL, where he trains a select group of individuals and teaches mentorships. His DVDs, books, seminar schedule, and blog can be found at PerformanceU.net.